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Abstract 
A new type of semigroup which appears while dealing with N ---- 1 superconformal 
symmetry in superstring theories is considered. The ideal series having unusual ab- 
stract properties is constructed. Various idealisers are introduced and studied. The 
ideal quasicharacter is defined. Green's relations are found and their connection with 
the ideal quasicharacter is established. 

1. I n t r o d u c t i o n  

Mathematical objects with new properties often appear from concrete physical con- 
siderations and models. The discovery of supersymmetry [36, 37] gave many new 
mathematical  features, but its influence on the general abstract properties of the the- 
ory, in spite of the fact that among principal objects there were noninvertible ones and 
zero divisors [16], needs to be emphasized. The latter leaded to the conclusion that 
the abstract ground of supersymmetric theory should have a semigroup nature [8]. 
It was also realised that the noninvertible transformations and semigroups appearing 
in that way have many new nontrivial properties [7, 10]. In particular, it would be 
interesting to work out the general abstract structure of the N = 1 superconfor- 
real semigroup, which is important  in the consistent construction of the superstring 
unified theories [17, 12]. In this paper we provide a consideration of the superconfor- 
mal semigroups from the abstract-algebraic point of view and present their abstract 
properties without proofs which will appear elsewhere. 

2. P r e l i m i n a r i e s  

The semigroup of N = 1 superconformal transformations of C 1'1 complex superspace 
with the coordinates (z, 0) valued in the Grassmann algebra [2], where z E 6 1'0 and 
0 E C °A, is isomorphic to the semigroup S of the even C 1'° -+ C 1'° and odd 
C ~'° --+ C °'1 functions satisfying some multiplication law (for details see [7, 9]). The 
even part of the law 
(1) s3= s~*s2, s ie S, 

in terms of the even functions g(z) can be presented as 

(2) g3(:) = [g,(~) + hl(~)], g~(z), 
where ~ is some shifting and hi(z) is some even nilpotent function of second degree, 
i.e. h~(z) =_ hi(z), h~(z) = 0. We stress that,  because of the shifting z -+ ~ and 
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the second term in the brackets (2), S differs from the semigroups of functions with 
point by point multiplication [6], and also from the semigroups of functions [24, 25]. 
This leads to new unusual abstract properties of S considered below. Further we 
note that  to study these properties it is sufficient to know the formal expression (2) 
only. This parametrisation of N = 1 superconformal transformations was given in 
[7, 9] (where one can also find the exact formulas and the concrete background). For 
other considerations we refer to [1, 27, 28, 15]. 

Here we do not consider the physical interpretations of g(z) (see [1, 5]) and 
stress only that  g(z) controls invertibility of the superconformal transformations [8]. 
Therefore, the index of g(z) which is defined by 

(3) indg(z)  d~S {n • g I g"(z) = O,g'~-l(z) ¢ 0} 

plays a crucial part  in the following. We mention here that  in (2) and (3) the multi- 
plication is a point by point one in the Grassmann algebra [2] (for clarity sometimes 
we use a point for it), but the star in (1) denotes the semigroup multiplication. 

So the semigroup S can be divided into two disjoint parts S = G U T,  
G Cl T = O, where 

(4) a eAs {s • S I indg(z) = e c ) ,  

(5) T e&s {s • S I indg(z) < oo}. 

Here G is a group corresponding to the invertible transformations. From the multi- 
plication law (2) it follows that  T is a two-sided ideal. The unity element e • S has 
g(z) = 1, h(z) = 0, and the zero element has g(z) = O, h(z) = 0 (for other details 
see [8, 9]). From (2) and the relation indh(z)  = 2 it follows that  T is a nilsemi- 
group [21, 13, 11, 34], i.e. Vt • T 3n • Z, t ' n =  z (here the multiplication in the 
power expression is implied as the semigroup one (1)). So every element from T is 
nilpotent without bound on its index and of finite order, but every element from G 
is of infinite order. 

The superconformal transformations corresponding to G were studied earlier 
in [1, 5, 29]. Therefore we concentrate our attention on the ideal T , which gives 
the evidence of some unusual abstract properties of the parametrised superconformal 
semigroup S. 

3. I d e a l  Ser ies  

To classify the elements from the ideal part  T we take the n- th  power of the equation 
(2) in the Grassmann algebra and, using the relation ind h(z) = 2, obtain 

(6) 9 (z) = + 

We see that  the natural  classification can be done by means of the index of 
g(z) (see (3)). Let us define the following sets 

(7) A~ d~_i {s • S I indg(z)  = n ) .  

(s) U 
k<n 
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Then we notice that T is a disjoint union of the sets An,  because T = 
U , A  , A t3An_ 1 = O. From (6) it follows that In-1 C In and I n \ I n - I  = A , .  
Therefore we obtain the following infinite chain of the sets In 

(9) z C I1 c 12 c . - -  c I ,  c .-- c T. 

To understand the meaning of In we use (6) and obtain 

(10) S * I ,  C_ I , ,  

(11) In*  S C_C_ I~+l, 

(12) S * I ~ * S  C_ I~+1, 

From these relations we can easily observe that the sets In are left ideals of the 
semigroup S, but not right ideals, because of (11). Moreover, the appearance of n + 1 
in the right side of (11) and (12) is very unusual, and so is natural to call these strange 
sets I~ "jumping ideals". Therefore I~-a <~lI~ and the chain (9) is a left and "jumping 
ideal" series. Then In are quasiideals [33, 4] since they satisfy S * In r) In * S C I~ . 
Simultaneously, the sets I~ are biideals, because In * S * In C_ In [3, 20]. It is exciting 
that in our case the regularity is not necessary for the coincidence of quasiideals and 
biideals in superconformal semigroup (as distinct from [20]). Because of the inclusion 
In <1U => In <3 S, VU <1S the semigroup S is a filial semigroup [18]. The indices in 
(9) form a well ordered set for which n is an ordinal. Because of In-t  <ll In the chain 
(9) can be called a left ascending ideal series of S . From (11) and (12) we derive 

(13) S * In U In * S C I ,+l ,  

This condition is opposite to that for which the chain (9) is an ascending annihilator 
series of S [14, 31]. So we call it an ascending antiannihilator series of S . 

The multiplication law for the sets I~ and Am is 

I,,* In+k C_ In+l, 
In+k-1 * I .  C_ In, 
A ~ *  A~+ k C In+l, 
A ~ + k - l * A n  C In, 
I~* An+k C_ I~+l, 

(14) In+k-1 * An C_ In, 
An*ln+k  C In+l, 
An+k-I * I .  C_ I . ,  
I ,~*G C_ In+l, 
G * I , ,  C_ In, 
A ~ * G  C_ In+l, 
G , A n  C A~. 

where k > 0. It follows that the set In is a subsemigroup of S , because from (14) 
we have I ~ * I n  C I~ but the set A~ is not a subsemigroup, since A ~ , A  C I,~. 
This is a consequence of the fact that our semigroup is defined over the Grassmann 
algebra [2] which contains nilpotents and zero divisors, and the latter fact should be 
taken into account properly [16]. 
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From the last two relations of (14) and (12) we can obtain 

(15) G * A  ,GC_I ,+ I ,  

i.e. some of the elements from A are conjugated by the subgroup G with the 
elements of the next set A,+I.  By analogy with [35, 23, 22] we define G-normal 
subsets A, BC__S as follows: g - a , A , g C _ B ,  g G G .  Then from (15) we make 
a conclusion that any two sets An contain G-normal elements and one can reach 
any A,~ using the subgroup action only. Further general abstract properties of such 
elements can be found in [23, 30]. 

4. Idealisers 

The left (right, two-sided) idealiser Ii (U) ( L (U), I (U)) of the subset U C S can 
be defined as the largest subsemigroup of S within which U is a left (right, two-sided) 
ideal, i.e. 

(16) Ii (U) a,__/{s C_ S I s * U C U},  

(17) /~ (O) aL-/{s C S I U ,  s C U ) ,  

(18) I ( u )  d e = I { s C _ S I s * U C U ,  U * s C _ U } .  

The set I (U) is a subsemigroup, since from 

U*sC_ U, s , U  C_U, U * t  C U a n d t * U C U  

we may deduce that 

U * s * t C U * t C U a n d s * t * U C s * U C U .  

Also, if V is a subsemigroup of U and U <1V , then v * U C_ U,  U * v C_ U for all 
U in V and so V C _ I ( U ) .  

Let us consider the idealisers of the various introduced subsets of S. First the 
left idealiser for I ,  is S, as follows directly from (10), i.e. 

(19) Is (I~) = S. 

From the last relation in (14) we find 

(20) ~t ( A )  = G. 

For the right idealisers of IN the situation is more complicated.Using (11) we 
divide S into two disjoint parts S = SI.  U San,  where SI. N S a .  = O, and they 
satisfy the relations 
(21) I , * S l ,  C_ I ,  . 

(22) I , * S a ,  C h , +  1 

By definition (17) Sx, is the right idealiser for I , ,  i.e. 

(23) I, (I.) = SI.. 
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Obviously I~ C SI~, since In * I~ C I~. Therefore Si~ = I~ U SHn. From 
(6) it follows that  for the elements from SIt~ the second term in the brackets should 
disappear, and therefore we find 

(24) SII n -~ {S e T \ I n I g~'-' (~)" g~' (z) = 0, h I (z ) .  g~ (z) -- 0}.  

Then the "jumping" set SA.  from (22) is equal to SAn -- (S \ In) \ SXl.. 
Another way to vanish the second term in (6) is by considering the special 

superconformal transformations (they are called Ann-transformations in [9]) for which 
the relation gn-,  (z)-  h (z) = 0 is valid (see (2) and (6)). Let us divide I ,  in two 

disjoint parts In = IA,  U I#A~, where Inn d~! {s G In I g " - '  (z)" h (z) = 0}. It was 
shown in [9] that  the Ann-property is preserved from the right only, and so we obtain 
Inn * S C Inn ,  which means that  IAn is a right ideal in S, then 

(25) L (IAn) = S. 

For the sets A a m = IAn \ IAn_l we find AAn * G C_ A A , ,  and therefore 

(26) Ir (AAn) = G. 

We note here that  by means of the right group action we can reach a set In 
with any large n, because the relation ACAn * G C z~¢An+~ (see also (15)). 

5. Ideal Quasieharacter 

Let us define 
(27) X (s) de=] {n E N I ind g (z) = n}.  

Using (10) and (11) we obtain 

~" x ( t ) ,  X(s) _> x ( t )  
(28) m a x x ( s  * t )  X ( s ) + I ,  X(s) < k ( t ) .  

In particular, 

(29) )¢ ( g - s )  = X(s) ,  s # z .  
X(s*g)  = ~ ( s ) + l ,  

From (28) it follows that  n8 = IX (s * t)  - X (s) - X (t)l is bounded. This value 
nz shows how much the mapping s ~ X (s) differs from a homomorphism [19]. The 
boundedness of n~ allows us to conclude that  X (s) is a quasicharacter [32] which can 
be called an ideal quasicharacter. The elements of S having finite ideal quasicharacter 
are nilpotent and belong to the ideal T ,  and X (g) = c~, g E G .  Another description 
of the ideal quasicharacter can be written as follows X (s) = n <==~ s E ~ , .  Since 
A ,~ ~ ~,~ = O, n # m , we conclude that  X (s) indeed separates the elements having 
different indices, and the relation 7r defined as STr$ ¢==~ )¢ (s) = X (t) is an equivalence 
relation in S. 
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6. G r e e n ' s  R e l a t i o n s  

In our notations the Green's L and T~ relations are 

(30) s £ t  ¢ ~  3u, v E S ,  u , s = t ,  v * t = s ,  
s T ~ t  -u-4- 3 u , v E S ,  s . u = t ,  t , v = s .  

Let us find L and T£ equivalent elements in the superconformal semigroup 
S. Using (10) and (28) we find that s / : t  =:~ X(s) < )~(t) A x ( t )  < X(s) =~ 
X (s) = X (t). Therefore £ --- rr, and L-equivalent elements have the same ideal 
quasicharacter, 
(31) s z: t ~ x  (s)  = x ( t ) ,  

and they belong to the same set A~. By analogy from (11) for the 7~-equivalent 
elements we derive s T i t  =~ X(s) < x ( t ) + l A x ( t )  < ) ; ( s ) +  1. Then the ideal 
quasicharacters of the Tg-equivalent elements can differ only by 1 or coincide, i.e. 

(32) s T¢ t ~ IX (s) - X (t)] < 1. 

Since 7-/= L fl 7~, the sets A~ consist also of H-equivalent elements. 
Consider the L-equivalent elements. Let s ~ t, s ~ z, t ~ z. From (30) we de- 

rive t h a t s = v * ( u * s ) = ( v * u ) * s =  ( v * u ) * k * s f o r a n y k E N .  I f v E T V u E T ,  
then (v * u) *k E T ,  since T is an ideal in S. Because of T is a nilsemigroup 3n E N 
such that (v * u) *n = z. Through the arbitrariness of k we choose k = n and obtain 
s = (v * u) *n * s = z * s = z or s = t ,  which contradicts the initial assumptions. The 
same is valid for other Green's relations. Therefore v E G A u E G,  i.e. nontrivial 
L and T~ equivalences can be constructed with regard to the invertible elements of 
S only. In fact the principal left and right ideals generated by Y t E S and defined 
by L (t) de_=/S * t and R (t) 4¢1 t * S are analogous to the left and right cosets of G 
in S introduced in [26, 30]. 
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